

A201

Technical Data Sheet

High impact resistance, high elongation at break, high bonding strength and high printing accuracy. The toughness is better than PETC, and it has good printability, suitable for printing mechanical parts with toughness and precision requirements .

\bigcup	

Material Status		Mass Production	
	 High toughness 		
Characteristics	 Multiple color 		
	 Excellent printability 		
Applications	Mechanical engineering	• The automobile industry	Electrical and electronic
Form	• Filament		
Processing method	• 3D Print, FDM Print		

Physical Properties			
Density	ISO 1183,GB/T 1033	1.23	g/cm3
Melt Flow Index	ISO 1133	5.50	210°C/2.16kg
Mechanical Properties			
Tensile Strength (X-Y)	ISO 527,GB/T 1040	51.36	MPa
Tensile Strength (Z)		47.7	MPa
Elongation at Break (X-Y)	ISO 527,GB/T 1040	5.22	%
Elongation at Break (Z)		4.88	%
Young'Modulus (X-Y)	ISO 527,GB/T 1040	2955.77	MPa
Young'Modulus (Z)		3202.02	MPa
Bending Strength (X-Y)	ISO 178,GB/T 9341	79.92	MPa
Bending Strength (Z)		75.44	MPa
Bending Modulus (X-Y)	ISO 178,GB/T 9341	3025.91	MPa
Bending Modulus (Z)		3103.92	MPa
Impact strength (X-Y)	ISO 179,GB/T 1043	3.5	KJ/m2
Impact strength (Z)		N/A	
Thermal Properties			
Heat distortion Temperature	ISO 75 0.45MPa°C	59.8	°C
Glass Transition	DSC,10°C/min	61	°C
Melting Point	DSC,10°C/min	150	°C
Electrical Properties			
Surface Resistance	DIN IEC 60093	N/A	

Nantong Qiangsheng Graphene Technology Co., Ltd

Room 1811, Shanghai International Trade Center 2201 Yan An Xi Road, Shanghai, China, 200336

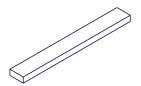
A201

Recommended printing parameters		
Print Temperature	205- 225°C	
Build Platform	40-60°C	
Cool Fan	On	
Printing Speed	100-300mm/s	

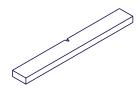
Based on 0.4 mm nozzle and Simplify 3D v.4.1.2. Printing conditions may vary with different nozzle diameters


Drying Recommendations

The samples for the general test need to be dried at 55°C for at least 4 hours before printing.


Precautions:

Remote printing needs to reduce the printing speed (≤40mm/s) to prevent potential feeding issue


Mechanical Properties

Tensile testing specimen GB/T 1040 Testing specimen GB/T 1043

Bending testing specimen GB/T 9341

Impact

The physical properties, mechanical properties, thermal properties, and electrical properties of the line are obtained based on the injection molding spline test.

Print test condition:	
Print Temperature	210°C
Build Platform Temperature	55°C
Outline/Perimeter Shells	4
Top/Bottom Layers	4
Infill Percentage	20%
Cool Fan	On
Printing speed	120mm/s

Based on 0.4 mm nozzle and Simplify 3D v.4.1.2.

Notice

All information supplied by or on behalf of GRAPHNEOVA in relation to this product, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but the product is sold as is.". GRAPHNEOVA assumes no liability and makes no representations or warranties, express or implied, of merchantability, fitness for a particular purpose, or of any other nature with respect to information or the product to which information refers and nothing herein waives any of the seller's conditions of sale.

Nantong Qiangsheng Graphene Technology Co., Ltd

Room 1811, Shanghai International Trade Center 2201 Yan An Xi Road, Shanghai, China, 200336